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Bases in the Spaces of C∞-Functions
on Cantor-Type Sets

A. Goncharov

Abstract. We construct a topological basis in the space of Whitney functions given
on the Cantor-type set.

1. Introduction

The basis problem is one of the most important parts of the theory of the structure of
functional spaces. Are the spaces isomorphic? Do they have certain linear topological
properties? Investigating these and some other questions is simpler when we consider
the spaces of basis expansions of elements. On the other hand, the functions that form
a basis in the functional space X, as usual, play a special role in the concrete prob-
lems of analysis related to X . One can mention here the Chebyshev polynomials in the
space C∞[−1, 1] [15], the Hermite functions in the space S of rapidly decreasing C∞-
functions [15], the Faber polynomials in spaces of analytic functions (see, e.g., [16]), and
the Franklin sequence in the Hardy space H 1 [17]. Wavelets, widely used for diverse
scientific applications, form unconditional bases in a variety of functional spaces on Rn

(see, e.g., [11] and [18]).
In the case where X (K ) is the space of traces on a compact set K ⊂ Rn of functions

from the certain class X (Rn), we can construct a continuous linear extension operator
L : X (K ) → X (Rn) by means of suitable extensions of the basis elements of X (K ).
This method goes back to Mityagin [15] and was, for example, used in the case of the
spaces of Whitney functions in [9] and for ultradifferentiable functions in [2].

Among many results on the existence or lack of a basis in the spaces of holomor-
phic or differentiable functions, there are two related to the basis problem in the case of
C∞-functions given on Cantor-type sets. In [19] Zeriahi proved the existence of a mea-
sure, such that the polynomials orthogonal with respect to this measure form a basis in
the Whitney space E(K ) when the compact set K has the Markov property. In partic-
ular, the classical Cantor ternary set satisfies the condition as proved in [3]. Moreover,
by Proposition 2 in [4] the Cantor-type set has Markov’s property if and only if it is
uniformly perfect.
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Using another technique, Keşir and Kocatepe proved in [14] the existence of a basis
in the space E(K ) for the Cantor-type set K with the extension property, that is, where
there exists a continuous linear extension operator L : E(K )→ C∞(R). Geometrically
this means that the Cantor-type set is not very rarefied.

Here we present explicitly a Schauder basis in the space E(K ) for any Cantor-type
set. In the case of rarefied sets K , the partial sums of the basic expansion of f ∈ E(K )
are just the interpolating polynomials of f corresponding to the uniform distribution of
nodes on K . In another case, which includes the classical Cantor set, local interpolations
of functions will be used.

It should be noted that interpolation Schauder bases in other functional spaces on
fractals were given in [12] and [13]. For wavelets on fractals, see, for instance, [6].

2. Biorthogonal Systems

Given a compact set K ⊂ R and a sequence of distinct points (xn)
∞
1 ⊂ K , let

en(x) =
∏n

1(x − xk) for n ∈ N0 := {0, 1, . . .}. Here and in what follows we adopt
the convention that

∏n
m(· · ·) = 1 for m > n. Let X (K ) be a Fréchet space of continu-

ous functions on K , containing all polynomials. By ξn we denote the linear functional
ξn( f ) = [x1, x2, . . . , xn+1] f with f ∈ X (K ) and n ∈ N0. For the definition and
properties of the divided differences, see, e.g., [5]. We have, trivially,

Lemma 1. If a sequence (xn)
∞
1 of distinct points is dense on a perfect compact set

K ⊂ R, then the system (en, ξn)
∞
n=0 is biorthogonal and the sequence of functionals

(ξn)
∞
n=0 is total on X (K ), that is, whenever ξn( f ) = 0 for all n, it follows that f = 0.

As in [8] we will consider different basic systems and the following convolution
property of the coefficients of basis expansions.

Lemma 2. Let (x (s)k )∞k=1, s = 1, 2, 3, be three sequences such that for a fixed super-
script s all points in the sequence (x (s)k )∞k=0 are different. Let ens =

∏n
k=1(x − x (s)k ) and

ξns( f ) = [x (s)1 , x (s)2 , . . . , x (s)n+1] f for n ∈ N0. Then

r∑
q=p

ξp3(eq2) ξq2(er1) = ξp3(er1) for p ≤ r.

Proof. We have three bases (ens)
r
n=0, s = 1, 2, 3, in the (r + 1)-dimensional vector

space
∏

r of all polynomials of a degree less than or equal to r . If Mi← j denotes the
transition matrix from the j th basis of

∏
r to the i th one, then ξp3(er1) gives the (p, r)th

element of M3←1 which equals M3←2 M2←1.

By means of Lemma 2 we can construct new biorthogonal systems corresponding
to the local interpolation of functions. Suppose we have a chain of compact sets K0 ⊃
K1 ⊃ · · · ⊃ Ks ⊃ · · · and finite systems of distinct points (x (s)k )

Ns
k=1 ⊂ Ks for s =

0, 1, . . . . Some part of the knots on Ks+1—let (x (s+1)
k )

Ms+1
k=1 —belongs to the previous set
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(x (s)k )
Ns
k=1. The sequences (Ms) and (Ns) can be specified later. In what follows we will

take 2Ms+1 = Ns ≤ Ns+1.

For any s ≥ 0 and for n = Ms + 1, . . . , Ns, set ens =
∏n

k=1(x − x (s)k ) for x ∈ Ks

and ens = 0 for x ∈ K0\Ks . If Ks−1\Ks is closed for any s ≥ 1, then the functions
ens are continuous on K0. Let ξns( f ) = [x (s)1 , x (s)2 , . . . , x (s)n+1] f with x (s)Ns+1 := x (s+1)

Ms+1+1.

We see at once that ξns(em, s+1) = 0, because the number ξns( f ) is defined by values of
f at some points on Ks\Ks+1 and at some points from (x (s+1)

k )
Ms+1
k=1 , where the function

em, s+1 is zero. Clearly, ξn, s+1(ems) = 0 for n > m.But, for n ≤ m, the functional ξn, s+1,

in general, is not biorthogonal to ems . For this reason we take the functional

ηn, s+1 = ξn, s+1 −
Ns∑

k=n

ξn, s+1(eks)ξks,

which is biorthogonal, not only to all elements ems , but also, by the convolution property,
to all emj with j = 0, 1, . . . , s − 1.

3. Rarefied Cantor Sets

Let 	 = (ls)
∞
s=0 be a sequence such that l0 = 1 and 0 < 3ls+1 ≤ ls for s ∈ N0. Let

K (	) be the Cantor set associated with the sequence	, that is, K (	) =⋂∞
s=0 Es,where

E0 = I1,0 = [0, 1], Es is a union of 2s closed basic intervals Ij, s of length ls and Es+1

is obtained by deleting the open concentric subinterval of length hs := ls − 2ls+1 from
each Ij, s, j = 1, 2, . . . , 2s . Denote αs = log ls+1/log ls for s ∈ N. Thus, ls+1 = l α1 ... αs

1 .

Let x be an endpoint of some basic interval. Then there exists the minimal number s (the
type of x) such that x is the endpoint of some Ij,m for every m ≥ s.

Let us choose the sequence (xn)
∞
1 by including all endpoints of basic intervals, using

the rule of increase of the type. For points of the same type we first take the endpoints
of the largest gaps between the points of this type; here the intervals (−∞, x), (x,∞)
are considered as gaps. From points adjacent to the equal gaps, we choose the left one x
and then 1− x . Thus, x1 = 0, x2 = 1, x3 = l1, . . . , x7 = l1 − l2, . . . , x2k+1 = lk, . . . .

We consider the space E(K (	)) of Whitney functions on K (	) with the topology
defined by the norms

‖ f ‖ q = | f | q + sup{|(Rq
y f )(i)(x)| · | x − y|i−q; x, y ∈ K (	), x �= y, i = 0, 1, ..., q},

q = 0, 1, . . . , where | f | q = sup{| f (i)(x)| : x ∈ K (	), i ≤ q} and Rq
y f (x) = f (x)−

T q
y f (x) is the Taylor remainder. Each function f ∈ E(K (	)) is extendable to a C∞-

function on the line. Since the compact set K (	) is perfect, the set ( f (i)(x))i∈N0,x∈K (	)

is completely defined by the values of f on K (	).
Let eN (x) =

∏N
1 (x − xk) and ξN ( f ) = [x1, x2, . . . , xN+1] f for N ∈ N0.

Theorem 1. For a sequence	 let us have αs ≥ 2, s ∈ N. Then the sequence (eN )
∞
N=0

is a Schauder basis in the space E(K (	)).

Proof. By Lemma 1 the system (eN , ξN )
∞
N=0 is biorthogonal with a total sequence of

functionals. Therefore, by the Dynin–Mityagin criterion [15, T.9], it is enough to show



354 A. Goncharov

that for every p there exist r and C such that, for all N ,

‖eN‖p · |ξN |−r ≤ C.

Here, and subsequently, | · |−r denotes the dual norm: for ξ ∈ E ′(K ) let |ξ |−r =
sup{|ξ( f )|, ‖ f ‖r ≤ 1}.

There is no loss of generality in assuming that p = 2u . Given u, we take q = 2v − 1,
where v = v(u) and r = r(q) will be specified later. Let us fix N = 2n + ν, where
0 ≤ ν = 2r1 + · · · + 2rm < 2n with 0 ≤ rm < · · · < r1 < r0 := n. According to the
procedure we choose at first all 2n points of the type less than or equal to n − 1. The
remaining ν points of nth type we separate into groups: 2rj points (let us denote this set
by Xrj ) are uniformly distributed on the basic intervals Im, rj ,m = 1, 2, . . . , 2rj . If ν = 0,
then sets Xrj are empty for j ≥ 1. In this notation eN (x) =

∏m
j=0

∏
xk∈Xrj

(x − xk).

Every interval of length lrj contains just one point from the set Xrj . By the structure of

the set K (	), for x ∈ K (	) we get
∏

xk∈Xrj
|x − xk | ≤ lrj lrj−1l2

rj−2 · · · l2rj−1

0 . Therefore,

|eN | 0 ≤
m∏

j=0

(lrj lrj−1l2
rj−2 · · · l2rj−1

0 ) =
N∏
1

zk,(1)

where (zk)
N
1 are arranged in nondecreasing order. For example, if ν < 2n−1, then z1 =

ln, z2 = ln−1, z3 = z4 = ln−2, . . . ; if ν ≥ 2n−1, then z1 = ln, z2 = z3 = ln−1, z4 =
ln−2, . . . .

Arguing as in [10, L.2] we get, for N > p,

|eN |p ≤ N p
N∏

p+1

zk .

In order to estimate ‖eN‖p , let us fix x, y ∈ K , i ≤ p. Let R denote (R p
y eN )

(i)(x).
Suppose, at first, that x and y belong to the same basic interval Ij, n−u+1.By the Lagrange
form of the Taylor remainder, |R| · |x− y| i−p ≤ |e(p)N (θ)−e(p)N (y)|,where θ ∈ Ij, n−u+1.

As above we get the bound |e(p)N (θ)| ≤ N p
∏N

p+1 dk(θ) with dk(θ) := |θ − xik | ↑ . The
interval Ij, n−u+1 contains λ points (with p/2 ≤ λ ≤ p) of the set (xk)

N
1 . But dk(θ) ≤ zk

for k > λ. Therefore, |R| · |x − y| i−p ≤ 2N p
∏N

p+1 zk .

Suppose now that | x − y | ≥ hn−u ≥ 1
3 ln−u . Then, for any j with i ≤ j ≤ p, we get

the bound

|e( j)
N (y)| · |x − y| j−p ≤ 3pl j−p

n−u N j
N∏

j+1

zk ≤ 3p N p
N∏

p+1

zk,

as every interval of the length ln−u contains not less than p points from (xk)
N
1 and

zj+1, . . . , zp ≤ ln−u .

Hence, |R| · |x− y| i−p ≤ |e(i)N (x)| · |x− y| i−p+∑p
j=i |e( j)

N (y)| · |x− y| j−p/( j− i)! ≤
(e + 1)(3N )p

∏N
p+1 zk . Thus,

||eN ||p ≤ 5(3N )p
N∏

p+1

zk .
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To estimate the dual qth norm of ξN we suppose that N is large enough, enumerate
the first N + 1 points of the sequence (xn)

∞
1 in increasing order, and use the bound (1)

from [10]:

|[x1, . . . , xN+1] f | ≤ 2N− q | f̃ |([0,1])
q

(
min

N−q∏
m=1

|xa(m) − xb(m)|
)−1

,(2)

where f̃ ∈ C∞[0, 1] is any extension of f on [0, 1]; min is taken over all 1 ≤ j ≤ N +
1−q and all possible chains of strict embeddings [xa(0), . . . , xb(0)] ⊂ [xa(1), . . . , xb(1)] ⊂
· · · ⊂ [xa(N− q), . . . , xb(N− q)] with a(0) = j, b(0) = j+q, . . . , a(N− q) = 1, b(N−
q) = N + 1. Here, given a(k), b(k) we take a(k + 1) = a(k), b(k + 1) = b(k)+ 1 or
a(k + 1) = a(k) − 1, b(k + 1) = b(k). We will denote by

∏
the minimizing product

above.
Let us consider all possible locations of q + 1 consecutive points (xj+k)

q
k=0 from

(xn)
N+1
1 . Every interval of the length ln−v contains more than 2v such points. Therefore

the product above can take its minimal value only if all q + 1 points are situated on the
same interval of this length. Fix this interval Ii, n−v . Let it containµ points from (xn)

N+1
1 .

Each of the two subintervals I2i−1, n−v+1, I2i, n−v+1 of Ii, n−v contains at most 2v points,
therefore the first µ − q − 1 terms of the product

∏
are larger than the length of the

gap hn−v. Other terms of
∏

can be estimated from below by the lengths of the gaps
hn−v−1, hn−v−2, . . . , h0.Hence we get the product as in (1), but lk should be replaced by
hk and the smallest q terms are absent. Since hk/ lk = 1− 2 lk+1/ lk ≥ 1− 2 l1, as lk ↘
and αk ≥ 2, therefore,

∏ ≥ (1− 2 l1)
N−q ·∏N

q+1 zk ≥ l N
1 ·

∏N
q+1 zk .

In addition (see [10, T.1] for more details), by the open mapping theorem for a given
q, there exists r ∈ N, Cq > 0 such that

inf| f̃ |([0,1])
q ≤ Cq || f || r(3)

for any f ∈ E(K (	)). Here inf is taken over all possible extensions of f to f̃ on [0, 1].
This yields

‖eN‖p · |ξN |−r ≤ C2N l−N
1 N p

q∏
p+1

zk,

where C = 5Cq3p.
For the estimation of the product

∏q
p+1 zk let us take into account only the terms zk

corresponding to the points from the set Xr0 . Clearly, including the points from other
sets Xrj can only decrease this product. Thus we have to remove p smallest terms of

the product lnln−1l2
n−2 · · · l2v−2

n−v+1l2v−1−1
n−v . Neglecting the last term we get

∏q
p+1 zk ≤

l2u

n−u−1l2u+1

n−u−2 · · · l2v−2

n−v+1 = lκ1 with

κ = 2uα1 · · · αn−u−2 + · · · + 2v−2α1 · · · αn−v ≥ 2n−2 (v − u − 1),

as αs ≥ 2. Taking into account the bound N < 2n+1 , we obtain

‖eN‖p · |ξN |−r ≤ C(2/ l1)
2n+1

2(n+1) pl2n−2 (v−u−1)
1 .

The value v such that (v − u − 1) ln 1/ l1 > 8 ln 2/ l1 gives the desired conclusion,
as is easily checked.
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4. Local Interpolation

In the case of the space E(K (	)), with αs < 2, s ∈ N, the condition of the Dynin–
Mityagin criterion is not valid for the system (eN , ξN )

∞
N=0, so we have to modify it.

Given a nondecreasing sequence of natural numbers (ns)
∞
0 , let Ns = 2ns , M (l)

s =
Ns−1/2 + 1, M (r)

s = Ns−1/2 for s ≥ 1 and M0 = 0. Here, (l) and (r) mean left and
right, respectively. For the fixed basic interval Ij,s = [aj,s, bj,s] we choose the sequence
of points (xn, j, s)

∞
n=1 using the procedure described in Section 3. Of course, instead of

1− x, we will take bj,s + aj,s − x .
Set eN ,1, 0 =

∏N
n=1(x − xn,1, 0) =

∏N
1 (x − xn) for x ∈ K (	), N = 0, 1, . . . , N0.

For s ≥ 1, j ≤ 2s let eN , j, s =
∏N

n=1(x − xn, j, s) if x ∈ K (	) ∩ Ij,s and eN , j, s = 0
on K (	) otherwise. Here, N = M (a)

s ,M (a)
s + 1, . . . , Ns with a = l for odd j and

a = r if j is even. Biorthogonal functionals are given in the following way: for s =
0, 1, . . . , j = 1, 2, . . . , 2s, and N = 0, 1, . . . , let ξN , j, s( f ) = [x1, j, s, . . . , xN+1, j, s] f.
Set ηN ,1, 0 = ξN ,1, 0 for N ≤ N0. Every basic interval Ij,s, s ≥ 1, is a subinterval of a
certain Ii,s−1 with j = 2i − 1 or j = 2i. Let

ηN , j, s( f ) = ξN , j, s( f )−
Ns−1∑
k=N

ξN , j, s(ek, i, s−1) ξk, i, s−1( f )

for N = M (a)
s ,M (a)

s + 1, . . . , Ns . As before, a = l if j = 2i − 1 and a = r if j = 2i.
Of course, for N > Ns−1, the subtracted sum above is absent.

Thus, on the interval Ii,s−1, we consider polynomials eN ,i, s−1 up to the degree Ns−1.
The functional ξNs−1, i, s−1 is defined by Ns−1 + 1 points, Ns−1/2 + 1 of them belong
to the left subinterval I2i−1,s . They are just the zeros of the first polynomial on this
subinterval. The other Ns−1/2 points give the zeros of eM (r)

s , 2i, s . By the arguments in

Section 2, we see that the system (e, η) := (eN , j, s, η N , j, s)
∞, 2s , Ns
s=0, j=1, N=Ms

is biorthogonal
with the total on the E(K (	)) sequence of functionals. This satisfies the condition of the
Dynin-Mityagin criterion, provided a suitable choice of the sequence (ns)

∞
0 is made.

Theorem 2. Let K (	) be a Cantor-type set. If a nondecreasing unbounded sequence
(Ns)

∞
s=0 of natural numbers of the form Ns = 2ns is such that for some Q the sequence

(2Ns l Q
s )
∞
s=0 is bounded, then the system (e, η) is a basis in the space E(K (	)).

Proof. We can assume, by increasing Q if necessary, that for s ≥ 1,

2Ns l Q
s ≤ 1.(4)

Let us take p = 2u and q of the form 2v such that q ≥ p + 5Q + 1. Fix s with
2ns−1 > 4q and j ≤ 2s . Fix 1

2 Ns−1 ≤ N ≤ Ns . Let N = 2n + ν with ns−1 − 1 ≤ n ≤ ns

and 0 ≤ ν < 2n. Then the function eN , j, s has zeros at all endpoints of the type less than
or equal to s + n − 1 on Ij, s (this is the set Xr0 , r0 = s + n) and some endpoints of
the type s + n from other sets Xrk , s ≤ rk < r0. Analysis similar to that in the proof of
Theorem 1 shows that

||eN , j, s ||p ≤ 5(3N )p
N∏

p+1

zk .
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Here the nondecreasing set (zk)
N
1 consists of the lengths ls+n, ls+n−1, . . . , ls taken from

the product ls+nls+n−1l2
s+n−2 · · · l2n−1

s , corresponding to the set Xs+n, with the similar
products corresponding to the sets Xrk . Note that the points from K (	)\Ij,s have no
influence on the estimation of ‖eN , j, s‖p for p < N , since dist (Ij,s, K (	)\Ij,s) = hs−1

is larger than ls .

The task is now to examine the functional ηN , j, s . Without loss of generality, we
can assume that j is even. Let j = 2i . The interval I2i,s is a subinterval of Ii,s−1.

Therefore,

ηN , 2i, s = ξN , 2i, s −
Ns−1∑
k=N

ξN , 2i, s(ek, i, s−1)ξk, i, s−1.(5)

Repeating (2) and (3), we have

|ξN , 2i, s( f )| ≤ Cq2Ns || f || r
∏−1

N
,(6)

where
∏

N denotes the minimal product corresponding to the functional ξN , 2i, s . This
product contains N − q terms of the type |xn,2i, s − xm,2i, s |.

As in the proof of Theorem 1, since ls ≤ 3hs , we get

∏−1

N
≤ (ls/hs)

N

(
N∏

q+1

zk

)−1

≤ 3Ns

(
N∏

q+1

zk

)−1

.(7)

Our claim is that the norm | · |−r of the subtracted sum in (5) (and, consequently, of
ηN , 2i, s) can be estimated from above by the expression similar to the right-hand side
of (7). Now 1

2 Ns−1 ≤ N ≤ Ns−1.

First note that, for any k, N ≤ k ≤ Ns−1, we have

|ξN , 2i, s(ek, i, s−1)| =
|e(N )k, i, s−1(θ)|

N !
≤

(
k

N

)
lk−N
s−1 ≤ 2klk−N

s−1 .(8)

If N = Ns−1, then ηN , 2i, s = ξN , 2i, s−ξN , i, s−1.Obviously, |ξN , i, s−1|−r has the desired
bound. Hence, we can assume that N + 1 = 1

2 Ns−1 + ν with 1 ≤ ν ≤ 1
2 Ns−1. From

N + 1 points on I2i,s that define the functional ξN , 2i, s we have 2ns−1−1 endpoints of the
type less than or equal to s + ns−1 − 2 and ν (at least one is included!) endpoints of the
type s + ns−1 − 1.

Fix k such that N ≤ k ≤ Ns−1. Denote by Zk the set (xn, i, s−1)
k+1
n=1, which defines the

functional ξk, i, s−1.

As in (6) we have the bound

|ξk, i, s−1|−r ≤ Cq2k
∏−1

k
,(9)

where
∏

k denotes the minimal product
∏k−q

t=1 yt corresponding to the functional ξk, i, s−1.

The terms of
∏

k are arranged in increasing order. The interval Ii, s−1 contains 2ns−1

endpoints of the type ≤ s + ns−1 − 2. Therefore the chosen k + 1 points occupy
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all endpoints of the type ≤ s + ns−1 − 3 and some endpoints (maybe all for k ≥
Ns−1 − 1) of the type ≤ s + ns−1 − 2. If k = Ns−1, then we get one endpoint of the
type s + ns−1 − 1.

Suppose that k is even. Let k = 2m. Then the interval I2i−1,s contains m+ 1 points of
Zk, whereas I2i,s contains only m. Since m ≥ q, we have to choose q + 1 consecutive
points from Zk on Zk ∩ I2i−1,s in order to get the minimal value

∏
k . Consider the

decomposition

∏
k
=

m+1−q∏
t=1

yt ·
N−q∏

t=m+2−q

yt ·
k−q∏

t=N+1−q

yt = π1 · π2 · π3.

Since m ≤ N , the value of π1 is not smaller than the product of the first m + 1 − q
terms of

∏
N . In fact, π1 is equal to this product only in the case when N = 1

2 Ns−1 and
k = Ns−1. Then the configuration of points of Zk ∩ I2i−1,s completely repeats that of
Z N := (xn, 2i, s)

N+1
n=1 . In all other cases we have m < N and the density of distribution of

points from Zk ∩ I2i−1,s is smaller than the one for Z N .

On the other hand, any term of π2 is not smaller than ls + hs−1, so it is larger than any
term of

∏
N . Hence, π1 · π2 >

∏
N . Any term of π3 is larger than hs−1. Therefore,

∏
k
≥

∏
N
·hk−N

s−1 .

The same conclusion can be drawn for k = 2m + 1. Since Ns−1 is even, we get k ≤
Ns−1 − 1. Then m ≤ 1

2 Ns−1 − 1 and so m + 1 ≤ N .
Taking into account (8) and (9), we see that

|ξN , 2i, s(ek, i, s−1)| · |ξk, i, s−1|−r ≤ Cq 22k(ls−1/hs−1)
k−N ·

∏−1

N
,

with k − N ≤ 1
2 Ns−1. Substituting this and (6) in (5), we get

|ηN , 2i, s |−r ≤ Cq · [2Ns + 1/2 · Ns−122 Ns−1 3(1/2) Ns−1 ] ·
∏−1

N
.

The expression in brackets is smaller than 10Ns , as is easy to check. Applying (7) and
(4) gives

|ηN , 2i, s |−r ≤ Cq · 30Ns

(
N∏

q+1

zk

)−1

≤ Cql−5Q
s

(
N∏

q+1

zk

)−1

.

Therefore,

||eN , j, s ||p · |ηN ,2i,s |−r ≤ 5Cq3p N p
s l−5Q

s zp+1 × · · · × zq .

Replacing all zk by ls we get the bounded sequence on the right-hand side, due to the
choice of q , and the proof is complete.
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By means of Theorem 2 we get a variety of different bases in the space E(K (	)).
Any sequence ns ↗∞ with the bound lims2ns/log2 l−1

s <∞, gives the basis property
of the system (e, η).

Question. Are these bases quasi-equivalent, that is, equivalent after renumerating and
multiplication by nonnull scalars?

It is a simple matter now to show bases in the spaces of Whitney functions on concrete
Cantor-type sets. In the case of the classical Cantor ternary set, one can take, for example,
ns = [log2 s] for s ≥ 2.Here [b] denotes the greatest integer in b. If αs = α, s ∈ N, for
some α > 1, then we get the compact set K (α) from [7] or K (α)

2 from [1]. This has the
extension property if and only if α ≤ 2. For any α > 1 we can take ns = [(s−1) log2 α]
for s ≥ 1+ ln 2/lnα in order to get (4). But if α ≥ 2 we can use as a basis the sequence
(eN )

∞
N=0 from Theorem 1 as well.

The restriction 3ls+1 ≤ ls at the beginning of Section 3 is essential for the estimation
of the dual norms of the functionals ξN and ξN , j, s . One may conjecture that the method
suggested can also be applied in the case ∃ ε0 : (2 + ε0)ls+1 ≤ ls, s ∈ N, but with
another sequence (xn),more closely related to the structure of the set K (	).On the other
hand, the condition ∃C : C ls+1 ≥ ls, s ∈ N, gives the uniformly perfect compact set
K (	) with the Markov property.

A slight change in the proof gives the basis in the spaces of Whitney functions on the
sets K (α)

N and, moreover, in the more general case K ((ls), (Ns)) with Ns ≤ N , s ∈ N
(see [1] for the definition). However, the question in [1] about the existence of a basis in
the space E(K∞) remains open if K∞ does not have the extension property.
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ultradifférentiables. Math. Nachr.

3. L. BIALAS, A. VOLBERG (1993): Markov’s property of the Cantor ternary set. Studia Math., 104:259–
268.
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11. E. HERNÁNDEZ, G. WEISS (1996): A First Course in Wavelets. Boca Raton, FL: CRC Press.
12. A. JONSSON, A. KAMONT (2001): Piecewise linear bases and Besov spaces on fractal sets. Anal. Math.,

27(2):77–117.



360 A. Goncharov

13. A. JONSSON (2004): Triangulations of closed sets and bases in function spaces. Ann. Acad. Sci. Fenn.
Math., 29:43–58.
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